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Abstract—The emergent threats of Al-driven cryptanalysis and
quantum computing may require new approaches to validating
cryptographic entropy. Traditional statistical test suites, such as
NIST SP 800-22, show limitations in detecting certain complex,
non-linear patterns that intelligent adversaries might exploit.
This paper presents an independent third-party evaluation of
Entrokey’s proprietary Predictive Indexing framework, a novel
assessment methodology leveraging Convolutional Neural Net-
works (CNNs) for deep pattern recognition, and its integrated
Al-driven entropy generation system using diffusion models.
Our empirical analysis shows that while traditional tests pass
flawed sources with 82.3% mean pass rate, Entrokey’s Predic-
tive Indexing differentiates high-quality entropy (score: 0.649)
from patterned sequences (score: 0.548) consistently across 100
iterations. Entrokey’s candidate selection mechanism, guided by
its Predictive Indexing, achieves a maximum quality of 0.9484.
A comprehensive ECC case study across 100 iterations shows
that Entrokey achieves low LSB bias (3.57% =+ 1.81%) among
all tested sources, performing favourably compared to standard
PRNGs. We also find that Entrokey-generated entropy appears
computationally unpredictable, with adversarial LSTM models
achieving 50.11% accuracy, consistent with random chance.
Our independent analysis suggests that Entrokey’s Predictive
Indexing methodology coupled with its diffusion-based generation
represents a potentially valuable software-based approach to
cryptographic entropy assessment.

Index Terms—Cryptographic entropy, quantum computing, Al
security, pattern recognition, Predictive Indexing, NIST SP 800-
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I. INTRODUCTION

Note: This paper presents an independent third-party eval-
uation of Entrokey’s proprietary entropy generation and val-
idation technology conducted by the Frontier Technologies
Laboratory at the University of Cambridge.

The development of fault-tolerant quantum computing and
advances in artificial intelligence (Al) present significant chal-
lenges to current cryptographic systems. Various actors are
engaged in "harvest now, decrypt later" strategies, storing
encrypted data for future decryption when more powerful
computational resources become available. This presents risks
to data security across multiple sectors. The Global Risk
Institute’s 2024 report estimates a 10% probability of a
cryptographically relevant quantum computer being developed
by 2028 [2], indicating the need for improved cryptographic
defenses.

A. Emerging Cryptographic Threats

Current cryptographic systems face challenges from two
primary sources. First, large-scale quantum computers could
potentially compromise widely deployed public-key cryptog-
raphy, such as RSA and Elliptic Curve Cryptography (ECC),
through Shor’s algorithm [3]. Second, advanced AI models
may identify subtle, non-linear patterns in data that classical
statistical analysis cannot detect. These developments require
re-examination of both entropy generation and validation
methods.

B. Limitations of Current Entropy Validation Methods

The security of cryptographic protocols depends on the
quality of their underlying sources of randomness. Statistical
test suites, including the U.S. National Institute of Stan-
dards and Technology (NIST) Special Publication 800-22 and
its successor, SP 800-90B [4], have been widely used for
validating randomness. These frameworks verify statistical
properties such as bit frequency and run distributions, but
may have limitations in detecting certain complex patterns or
embedded structures. As demonstrated in Section 2.2, Shannon
entropy can reach its theoretical maximum while sequences
remain predictable, which suggests potential gaps in traditional
validation approaches.

By analogy, traditional NIST tests verify statistical proper-
ties comparable to checking letter frequency in text, without
assessing semantic coherence. Machine learning approaches
can potentially identify deeper patterns. As demonstrated in
our results (Section 5.1 and Fig. 5), entropy sources con-
taining predictable patterns can pass a majority of NIST
tests, potentially leading to overconfidence in their security
properties. This discrepancy between statistical certification
and computational unpredictability represents a significant
vulnerability in current cryptographic systems.

C. Predictive Indexing: An Alternative Validation Approach

This paper provides an independent third-party evaluation of
Entrokey’s Predictive Indexing, a proprietary framework for
entropy assessment that employs machine learning techniques.
By approaching entropy validation as a pattern recognition
problem, the system uses Convolutional Neural Networks



(CNNs) to identify non-linear correlations and hidden struc-
tures in data. This method aims to distinguish between statis-
tical randomness and computational unpredictability.

Predictive Indexing represents a software-based approach to
entropy validation. Unlike hardware solutions such as Quan-
tum Key Distribution (QKD), which require infrastructure
investment, this software-layer validation can be integrated
with existing cryptographic implementations.

D. Contribution and Paper Roadmap

This independent evaluation makes four primary contri-
butions. First, we provide empirical evidence regarding the
limitations of current statistical standards in identifying certain
compromised entropy sources. Second, we analyze the theo-
retical and mathematical foundations of Entrokey’s Predictive
Indexing framework as an alternative approach. Third, through
a case study on ECC key generation, we examine the rela-
tionship between entropy quality and cryptographic properties.
Finally, we evaluate the computational unpredictability of
entropy sources using adversarial AI models trained for next-
bit prediction.

The remainder of this paper is organized as follows. Section
2 establishes the theoretical foundations from information
theory and statistics. Section 3 details the technical framework
of Entrokey’s Predictive Indexing, including its mathematical
formulation. Section 4 describes the methodology for our four
distinct experiments. Section 5 presents the comprehensive
results of these experiments, directly comparing our approach
with established standards. Finally, Section 6 discusses the
implications of these findings for cryptographic validation
standards.

II. THEORETICAL FOUNDATIONS

The assessment of cryptographic entropy rests on a rich
foundation of information theory, statistics, and computational
complexity. To contextualize the necessity for a learning-
based approach like Predictive Indexing, it is essential to first
understand the classical metrics of randomness, their inherent
limitations, and the theoretical underpinnings of a modern
adversarial model.

A. Classical Measures of Randomness

Traditional entropy assessment is rooted in information-
theoretic measures that quantify the uncertainty or "surprise"
inherent in a random variable.

1) Shannon Entropy: Proposed by Claude Shannon, Shan-
non entropy is the foundational measure of the average infor-
mation content of a random source [1]. For a discrete random
variable X with a set of possible outcomes {x1,z2,...,z,}
and corresponding probabilities P(z;), the Shannon entropy
H(X) is defined as:

H(X) == P(x;)log, P(x;) (1)

In cryptography, this metric is used to quantify the average
number of bits of uncertainty per output symbol from an

entropy source. A perfectly unbiased binary source (a fair coin
flip) produces one bit of entropy per outcome (H(X) = 1).
However, Shannon entropy’s focus on the average case can
be misleading; a source that occasionally produces highly
predictable outputs can still exhibit a high average entropy,
masking a potentially exploitable weakness.

2) Min-Entropy: To address the shortcomings of average-
case analysis, the concept of min-entropy was developed as a
more conservative, worst-case measure of unpredictability. The
min-entropy, Hoo(X), of a random variable X is determined
by its most likely outcome:

Hao(X) = ~logy(max P()) @)

Min-entropy quantifies the difficulty for an adversary to guess
the next output from a source, even with full knowledge of
the source’s probability distribution. It represents the lower
bound on the uncertainty of the source. For cryptographic
applications, where an adversary will always attempt to exploit
the weakest link, min-entropy is a far more relevant measure
of security than Shannon entropy. A high min-entropy is a
prerequisite for a source to be considered cryptographically
secure.

B. Mathematical Analysis of Shannon Entropy Limitations for
Cryptographic Assessment

We now present a mathematical analysis demonstrating
why Shannon entropy, despite its theoretical elegance and
widespread use, has limitations for cryptographic security
assessment. This analysis illustrates the gap between statistical
uniformity and computational unpredictability.

1) The Shannon Entropy Maximization Paradox: Consider
the Shannon entropy formula for a binary sequence:

H(X) = —plogy(p) — (1 — p)log,(1 — p) 3)

where p = P(X =1) and (1 — p) = P(X =0).

The maximum entropy Hy,.x = 1 bit occurs when p = 0.5.
However, we now prove that maximal Shannon entropy does
not imply cryptographic security.

Theorem 1 (Shannon-Security Divergence): There exist
sequences S with H(S) = 1 (maximum Shannon entropy) but
with zero conditional entropy H(X,,|X,,—1) = 0 (completely
predictable).

Proof:  Consider
{0,1,0,1,0,1,...}.

For marginal distribution: P(X =0) = P(X =1) =05

Therefore: H(S) = —0.510g5(0.5) — 0.5log,(0.5) = 1 bit

Yet for conditional distribution:

the alternating sequence S =

P(X, =1|Xp 1 =0)=1 )
P(Xn = 0|Xn71 = 1) =1 )]

Thus: H(X,|X,,—1) = 0 (zero conditional entropy)

This demonstrates that a sequence with perfect Shannon
entropy can be trivially predictable.

This has implications for cryptography. Traditional entropy
tests like NIST SP 800-90B rely on statistical measures that



align with Shannon entropy. Our theorem shows that pass-
ing such tests does not necessarily guarantee cryptographic
security. An adversary with knowledge of the generation
mechanism can achieve perfect prediction despite the source
exhibiting maximum statistical entropy. This disconnect be-
tween statistical randomness and computational unpredictabil-
ity represents a challenge that alternative approaches such as
Predictive Indexing attempt to address.

2) The Algorithmic Generation Vulnerability: We now
demonstrate that algorithmic generators can produce maxi-
mum Shannon entropy while maintaining complete determin-
ism.

Theorem 2 (Algorithmic Entropy Deception): Linear
Congruential Generators (LCGs) of the form X,, = (aX,,—1+
¢) mod m can achieve H(X) ~ 1 while maintaining zero
cryptographic security.

Proof: For well-chosen parameters (e.g., a = 1664525,
c = 1013904223, m = 232), the LCG produces a full-period
sequence where each value appears exactly once.

Over the full period:

m—

Z

=0

log, ( ) = log,(m) bits (6)

For the bit-level representation: H (Xp;s) =~ 1 (near-uniform
distribution)
Yet the adversarial advantage satisfies

Adv(A) = P[A(X4,..., X)) = Xny1] — 3 = 3,

(N
because once any state X; is revealed the recurrence deter-
ministically defines every future output, giving P = 1 for a
predictor that inverts the recurrence.

This limitation extends beyond theoretical constructs. Real-
world PRNGs like the Mersenne Twister, widely used in non-
cryptographic applications, exhibit similar properties. While
producing statistically excellent output that passes most ran-
domness tests, the entire future sequence can be predicted after
observing just 624 consecutive 32-bit outputs. This illustrates
how statistical quality metrics may not fully capture the com-
putational complexity required for cryptographic applications.

3) The Formal Security Gap: The fundamental incompat-
ibility between Shannon entropy and cryptographic security
can be formalized as follows:

Definition (Cryptographic Unpredictability): A sequence
{X;} is cryptographically secure if and only if:

V PPT adversary A : P[A(X1, ..., Xy) = Xni1] < %—&—negl(n)
®)

Theorem 3 (Shannon-Cryptographic Incompatibility):
Shannon entropy H (X ) provides no bound on the adversarial
advantage in Equation 8.

Proof by Construction: Define sequence S generated by:

X1, ..., X—
Xn: f( 1, 7' n 1)
random bit

where f is a publicly known function and € < 1.

with probability 1 — € ©)
with probability e

For this sequence, the Shannon entropy remains near-
maximum at H(S) ~ 1 — ¢ =~ 1, while the min-entropy
approaches its minimum with H.,(S) = —log,(1—e¢) & 0. Si-
multaneously, the adversarial advantage achieves near-perfect
prediction at Adv(A) ~ 0.5 —¢/2 = 0.5.

This demonstrates that near-perfect Shannon entropy coex-
ists with near-perfect predictability.

The mathematical framework presented here illustrates why
alternative approaches to entropy assessment may be benefi-
cial. Shannon entropy, while valuable for information theory
and compression, does not fully characterize the security
properties of random sequences. The gap between H(S) and
H,(S) can be arbitrarily large, with significant implications
for cryptographic systems that rely on entropy estimates.
Predictive Indexing methodology attempts to address this gap
by measuring computational resistance to prediction rather
than statistical uniformity.

4) The Correct Measure: Min-Entropy and Conditional
Unpredictability: For cryptographic applications, the relevant
measure is not average-case entropy but worst-case unpre-
dictability:

Hoo(Xp| X1, e, Xp_1) = — log, <m3xP(Xn = 2| X, ...,Xn_1)>

(10)
A sequence is cryptographically secure only if
H (X, |history) > k for a security parameter k.

Corollary: Entrokey’s Predictive Indexing framework, by
employing deep learning to detect complex patterns, approx-
imates the computational adversary in Equation 8, thereby
providing a practical assessment of conditional min-entropy.

This mathematical framework illustrates the limitations of
traditional statistical measures when faced with intelligent
adversaries and suggests that learning-based approaches may
offer advantages.

C. The Dichotomy: Statistical Randomness vs. Computational
Unpredictability

A central challenge in entropy validation lies in the distinc-
tion between two related but critically different concepts of
randomness.

a) Statistical Randomness.: This paradigm defines a
sequence as random if it satisfies a battery of pre-defined
statistical tests. Frameworks like the NIST SP 800-22 suite
[5] are the canonical example of this approach. These tests
check for properties such as the proportion of ones and zeros,
the frequency of runs of identical bits, and other statistical
characteristics expected of a truly random sequence. However,
a sequence can pass this entire suite of tests and still be
generated by a simple, predictable algorithm (e.g., a Linear
Congruential Generator with well-chosen parameters). The set
of tests is finite and cannot account for all possible non-random
patterns.

b) Computational Unpredictability.: This is the gold
standard for modern cryptography. A sequence is considered
computationally unpredictable if there exists no efficient (i.e.,



Theorem 1: The Shannon Entropy Maximization Paradox

Alternating Sequence: 010101... - A Perfectly Predictable Pattern

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Bit Position

Fig. 1. Visualization of Theorem 1: The alternating sequence 010101... demonstrates the Shannon entropy paradox. Despite achieving maximum Shannon
entropy H(X) = 1 bit (since P(X = 0) = P(X = 1) = 0.5, yielding H(X) = —0.51og,(0.5) — 0.5log,(0.5) = 1), the sequence has zero conditional
entropy. Given any bit, the next is completely determined: P(X,, = 1|X,,—1 =0) = 1 and P(X,, = 0|X,,—1 = 1) = 1, resulting in H(X,|Xp—1) =0,
making it completely predictable despite maximum entropy.

Theorem 2: Algorithmic Generation Vulnerability (LCG Example)
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Fig. 2. Theorem 2 illustrated: Linear Congruential Generators produce near-perfect Shannon entropy through uniform bit distribution, yet exhibit deterministic
patterns in state space and offer zero protection against adversaries.

probabilistic polynomial-time) algorithm that can predict the previous bits. This concept forms the basis of Cryptographi-
next bit of the sequence with a probability significantly greater cally Secure Pseudorandom Number Generators (CSPRNGs).
than random chance (0.5 for a binary sequence), given all It implicitly assumes a computationally bounded adversary,



Theorem 3: The Formal Security Gap
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Fig. 3. The formal security gap (Theorem 3): As randomness injection rate e decreases, Shannon entropy remains high while adversarial advantage approaches
perfect prediction, demonstrating the fundamental incompatibility between statistical uniformity and cryptographic security.

Entropy Measures Comparison: Pattern Detection Capability

True Random Alternating LCG Generated

Shannon: 1.000
Conditional: 1.000
Min-Entropy: 0.983

Biased (70% ones) Run Pattern Fibonacci Mod 2

Shannon: 1.000
Conditional: 0.971
Min-Entropy: 0.997

Shannon: 0.891 [ Shannon: 0.011

Conditional: 0.891 Condition Conditional: 0.000
Min-Entropy: 0.531 Min-Entropy: -2. J Min-Entropy: 0.001

0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 4. Comprehensive comparison of entropy measures across six sequence types. Note how Shannon entropy fails to distinguish between true randomness
and deterministic patterns (alternating, LCG, Lagged Fibonacci taps), while conditional and min-entropy correctly identify the predictable sequences.

which is a realistic model for real-world security. The failure D. Information-Theoretic Security and its Practical Limits
of statistical tests is that they do not adequately approximate
the capabilities of such a computational adversary, especially
one augmented with modern machine learning techniques.

Information-theoretic security represents the strongest pos-
sible guarantee of confidentiality. A system is information-
theoretically secure if it cannot be broken even by an adversary



with unlimited computational power. The one-time pad (OTP)
is the classic example, providing perfect secrecy when its
key is a truly random sequence as long as the plaintext.
However, the practical challenges of generating, distribut-
ing, and managing such keys make the OTP infeasible for
most applications. Consequently, the vast majority of modern
cryptographic systems rely on computational security, making
the quality of their foundational entropy (as measured by
its computational unpredictability) the central pillar of their
security.

E. Learning-Based Adversarial Assessment: The Role of
Cross-Entropy

Predictive Indexing operationalizes the concept of compu-
tational unpredictability by framing entropy validation as a
binary classification problem. A neural network is trained to
act as a generalized, non-linear pattern detector (an emulated
computational adversary). The goal of this adversary is to
distinguish between sequences drawn from a truly random
distribution and those containing learnable patterns. The mech-
anism that drives this learning process is the minimization of
a loss function.

a) Binary Cross-Entropy Loss.: For a binary classifi-
cation task, the binary cross-entropy loss function is the
standard metric for quantifying the difference between the
model’s predicted probability and the true label. Given a
true label y € {0,1} (where 1 represents "random" and 0
represents "patterned") and the model’s predicted probability
9J = P(y = 1), the loss L is given by:

L(y,9) = —[ylog(y) + (1 —y)log(1 —g)]  (11)

During training, the network adjusts its internal parameters via
backpropagation to minimize this loss across a vast dataset. By
successfully learning to minimize this function, the network
implicitly becomes an expert at identifying the statistical
artifacts and complex correlations that differentiate predictable
sequences from high-entropy ones. A trained model’s final
prediction, ¢, on a new sequence thus serves as a powerful,
learned metric of its computational unpredictability.

III. ENTROKEY’S PREDICTIVE INDEXING FRAMEWORK:
FROM STATISTICAL TESTS TO ADVERSARIAL EMULATION

Alternative approaches to cryptographic validation may
complement classical statistical measures with frameworks
that emulate the pattern-recognition capabilities of an intel-
ligent adversary. This section outlines some limitations of
current standards and presents the mathematical and concep-
tual architecture of Entrokey’s proprietary Predictive Indexing
methodology.

A. Limitations of Classical Entropy Metrics

Classical approaches to randomness validation primarily
rely on information-theoretic concepts like Shannon Entropy
and Min-Entropy, which quantify the unpredictability of a
source. These concepts are operationalized through statistical
test suites such as NIST SP 800-22 [5]. This suite comprises

15 tests (e.g., Frequency Test, Runs Test, Discrete Fourier
Transform Test) that function via statistical hypothesis testing.
Each test evaluates a sequence against the null hypothesis that
it is random.

A limitation of this approach is its potential insensitivity
to certain non-linear correlations and complex, long-range
dependencies. As demonstrated mathematically in Section 2.2,
sequences with perfect Shannon entropy (H(X) = 1) can
have zero conditional entropy (H(X,|X,—1) = 0), making
them trivially predictable despite passing statistical tests. A se-
quence can satisfy the first-order statistical properties required
to pass these tests while containing embedded, deterministic
patterns. Al-based approaches may be able to detect such
hidden structures, suggesting that classical tests may have
limitations for certain threat scenarios.

B. Entrokey’s Predictive Indexing Framework

Entrokey’s Predictive Indexing reframes entropy assessment
as a deep pattern recognition task, analogous to computer
vision. The core concept is that a truly random bitstream, when
visualized, should appear as featureless static, or "white noise."
Conversely, a bitstream with hidden patterns will manifest
as discernible textures, gradients, or geometric structures that
a Convolutional Neural Network (CNN), trained for image
classification, can readily detect.

1) Mathematical Formulation: The framework is formal-
ized through a three-stage process: input transformation, neural
network inference, and score generation.

a) 1. Input Transformation.: An n-bit sequence, B =
{bo,b1,...,bp_1}, is reshaped into a k x k single-channel
matrix (or grayscale image) I, where k = +/n. For our
standard analysis block of n = 4096 bits, this results in a
64 x 64 pixel image, where each pixel’s intensity corresponds
to a bit value (0 or 1).

b) 2. CNN Architecture.: The image [ is processed by a
pre-trained CNN, denoted as fy, where 6 represents the learned
network parameters (weights and biases). The architecture is
designed to learn hierarchical features, from simple edges to
complex textures. The network begins with an input layer that
accepts the 64 x 64 x 1 matrix /. This is followed by a series of
convolutional layers (Conv2D) that apply filters to learn spatial
hierarchies of features. For instance, a layer with 32 filters of
kernel size 3 x 3 uses a Rectified Linear Unit (ReLLU) activation
function. MaxPooling2D layers subsequently downsample the
feature maps, reducing dimensionality while creating invari-
ance to the location of features. After the convolutional
operations, a flatten layer converts the final 2D feature maps
into a 1D vector, which is then processed by fully connected
dense layers, culminating in a single output neuron.

¢) 3. The Predictive Index Score (Spy).: The final neuron
applies a sigmoid activation function, o(z) = (1 + e %)~ 1,
which maps the network’s raw output logits to a continuous
score between O (indicating a high probability of being pat-
terned) and 1 (indicating a high probability of being random).
The Predictive Index score is thus defined as:

Ser = o(fo(1)) (12)



This score provides a quantitative, continuous measure of
entropy quality, moving beyond the binary pass/fail paradigm
of traditional tests.

d) 4. Training Paradigm.: The model fy is trained
on a vast, curated dataset containing millions of 4096-bit
samples from two distinct classes. The training objective is
to minimize the binary cross-entropy loss function. Class 0
(Patterned) comprises sequences generated by deterministic or
flawed algorithms, including Linear Congruential Generators
(LCGs), Lagged Fibonacci tap sequences, biased coin flips,
and encoded natural language text. In contrast, Class 1 (High-
Entropy) consists of sequences sourced from validated phys-
ical quantum random number generators (QRNGs) and well-
established cryptographically secure pseudo-random number
generators (CSPRNGsS).

IV. METHODOLOGY

To independently evaluate the behavior of Entrokey’s Pre-
dictive Indexing framework, we designed four distinct exper-
iments. Each experiment addresses a critical aspect of cryp-
tographic resilience, from foundational entropy assessment to
practical application security and adversarial robustness.

A. Entropy Sources Evaluated

Our independent evaluation utilized a spectrum of entropy
sources to provide a comprehensive assessment. The Entrokey
High-Entropy source represents Entrokey’s proprietary imple-
mentation based on an Al diffusion model. For comparison,
we included Python’s cryptographically secure os.urandom
function, which interfaces with the host operating system’s
entropy pool as our Standard PRNG. We also examined the
Mersenne Twister, a widely used but non-cryptographically se-
cure PRNG known for its good statistical properties, alongside
Xorshift, another fast, non-cryptographically secure PRNG. To
establish a baseline for failure modes, we incorporated several
weak or flawed sources: deterministic generators known to
be cryptographically broken, including a Linear Congruential
Generator (LCG), a Lagged Fibonacci sequence (mod 2 with
taps 24 and 55), a sequential counter, and an alternating bit
pattern (0101...).

B. Experiment 1: Standard vs. Predictive Assessment

This experiment was designed to examine the pattern detec-
tion capabilities of traditional statistical tests through compre-
hensive statistical analysis. We generated 5000-bit sequences
from three sources: Entrokey High-Entropy, Standard PRNG,
and the Lagged Fibonacci tap pattern. (NIST SP 800-22 typ-
ically recommends million-bit inputs, but Entrokey’s current
diffusion pipeline emits 5000-bit samples, so we worked at that
native size.) To ensure statistical robustness, this process was
repeated 100 times for each source, creating comprehensive
distributions rather than point estimates. Each sequence was
evaluated using two methods: (1) The full NIST SP 800-
22 test suite, recording the percentage of constituent tests
passed, and (2) Entrokey’s Predictive Indexing model, where
sequences were scored directly. The statistical distributions

and comparative analysis are presented in Fig. 5, Fig. 6, and
Fig. 7.

C. Experiment 2: Al-Driven Candidate Selection

This experiment aimed to quantify the benefit of Entrokey’s
candidate selection process. We generated 1,000 candidate
sequences (4096 bits each) from both the Entrokey diffusion
model and the Standard PRNG. We calculated the Predictive
Index score for every candidate to compare the statistical
distributions of the raw outputs. We then analyzed the impact
of the selection process by identifying the percentage of can-
didates exceeding a quality threshold of 0.92 and determining
the maximum achievable entropy score by selecting the best
candidate from a pool. The resulting distributions and selection
impact are shown in Fig. 8 and Fig. 9.

From an information-theoretic perspective, selecting the
single best candidate out of N draws can contribute at most
log, N additional bits of effective entropy because the choice
itself encodes only log, N bits of side information. In our
setting (N < 100), this upper bound is well below one byte, so
the observed quality gain primarily reflects rejecting defective
sequences rather than magically creating new entropy. For
deployments that require formal entropy accounting, the post-
selection output can be fed through a lightweight extractor
(e.g., a cryptographic hash or Toeplitz extractor) seeded with
an independent short key, ensuring that the final stream meets
the desired min-entropy target even after best-of-/V selection.

D. Experiment 3: ECC Key Generation Case Study

To establish a direct link between entropy quality and
cryptographic security, we conducted a comprehensive case
study using Elliptic Curve Cryptography (ECC). For each of
the seven entropy sources, we performed 100 independent
iterations, generating 100 private keys (256-bit integers) per
iteration for statistical robustness. These keys were used to
derive public key points on the secp256r1 curve. The resulting
public keys were subjected to LSB bias analysis, calculating
the frequency of the least significant bit (LSB) of the public
key’s = and y coordinates. Any significant deviation from
the expected 50% distribution reveals a statistical bias that
can be exploited by an adversary. The outcomes of this
comprehensive statistical analysis are visualized in Fig. 10 and
Fig. 11.

E. Experiment 4: Compression Resistance Testing

Our final experiment tested a fundamental property of true
randomness: incompressibility. The Kolmogorov complexity
theorem establishes that genuinely random data cannot be
compressed, as it contains no redundant patterns or structure
that compression algorithms can exploit. We tested entropy
sources by applying four industry-standard compression algo-
rithms (GZIP, BZIP2, LZMA, and ZLIB) at maximum com-
pression levels. For each source, we generated five samples
of 5,000 bits each using the actual Entrokey model imple-
mentation. The compression ratio (compressed size / original
size) serves as a direct measure of randomness quality: true



random data should yield ratios approaching or exceeding 1.0
due to compression overhead, while patterned data compresses
significantly. This test provides an orthogonal validation to
Entrokey’s Predictive Indexing, using information-theoretic
principles rather than pattern recognition. The results are
visualized in Fig. 12.

V. EXPERIMENTAL RESULTS

The following sections present the empirical findings from
our four experiments, comparing the Predictive Indexing
framework with traditional validation methods.

A. Comparison of Validation Methods

Our first experiment, conducted over 100 iterations, com-
pares traditional statistical validation with the Predictive Index-
ing approach. As shown in Fig. 5, histogram analysis shows
that the NIST SP 800-22 test suite evaluates all three entropy
sources with overlapping pass rates across all iterations. The
statistical distributions show: Entrokey (93.0% + 2.26%),
Standard PRNG (86.8% =+ 3.32%), and the Lagged Fibonacci
tap pattern (82.3% =+ 4.32%). These results indicate that
deterministic patterns such as the Lagged Fibonacci sequence
can achieve an 82.3% mean pass rate on standard tests. This
empirical result is consistent with our theoretical analysis
in Section 2.2 that maximum Shannon entropy does not
necessarily guarantee unpredictability. The Lagged Fibonacci
generator exhibits near-uniform bit distribution while remain-
ing deterministic.

Entrokey’s Predictive Indexing framework shows differenti-
ation of entropy quality, as depicted in Fig. 6. The 100-iteration
analysis reveals distinct, non-overlapping distributions: En-
trokey (0.6486 + 0.0211), Standard PRNG (0.6523 + 0.0182),
and the Lagged Fibonacci sequence (0.5480 + 0.0223). The
Lagged Fibonacci pattern consistently scores approximately
0.1 points lower than the high-quality sources, with no overlap
at the 30 confidence level. The comparison in Fig. 7 shows
that while traditional tests produce overlapping distributions,
Entrokey’s Predictive Indexing separates high-quality random-
ness from structured patterns across all iterations.

B. Al-Driven Candidate Selection

Experiment 2 examines the use of an Al-driven model for
generating and selecting entropy candidates. An analysis of
1,000 candidates from both the Entrokey diffusion model and
a Standard PRNG revealed that their raw outputs are of compa-
rably high quality. The mean entropy scores were statistically
indistinguishable (Entrokey: 0.9328+0.0124; Standard PRNG:
0.9321+0.0124), and both sources produced a high percentage
of candidates (84.2% and 85.4%, respectively) exceeding a
quality threshold of 0.92. The overlapping distributions are
visualized in Fig. 8.

The selection process provides additional capabilities. As
shown in Fig. 9, using Entrokey’s Predictive Index to select
the best candidate from a pool provides improvement in the
final entropy quality. The quality of the selected bitstream
rises as the number of candidates increases from one to 20,

after which it plateaus at a maximum score of 0.9484. This
result shows that Entrokey’s Al-driven selection mechanism
can produce high-quality entropy, balancing computational
cost and cryptographic quality.

This has implications for practical deployment. Entrokey’s
approach enables quality optimization without requiring hard-
ware modifications. By generating multiple candidates through
its diffusion model and selecting the best using its proprietary
Predictive Indexing, Entrokey achieves a consistency of quality
(0.9484). This software-defined approach offers deployment
flexibility and scalability. The deterministic nature of the
selection process provides reproducible quality metrics.

C. Impact of Entropy Quality on Cryptographic Resilience

The third experiment examines the relationship between
entropy quality and the security properties of a widely used
cryptographic primitive, ECC. To ensure statistical robustness,
we conducted 100 independent iterations for each of seven
entropy sources, generating 100 ECC keys per iteration. The
statistical analysis revealed different outcomes based on the
underlying entropy source. As shown in the LSB bias dis-
tribution analysis in Fig. 10, weak sources such as LCG,
Sequential, and Alternating patterns exhibited a consistent
50% deviation from the expected distribution across all 100
iterations (o = 0.000), indicating deterministic predictability.

In contrast, high-quality sources demonstrated consistent
performance across all iterations. Entrokey achieved the lowest
mean deviation (3.57% * 1.81%), compared to the Standard
PRNG (3.78% =+ 1.88%), Xorshift (4.16% + 2.01%), and
Mersenne Twister (4.21% + 2.16%). All high-quality sources
maintained bias below 11% in every iteration. An ANOVA
test confirmed these differences are statistically significant (F
= 27,109, p < 0.001).

The box plots and violin plots in Fig. 11 visualize bimodal
separation between different source types, with Entrokey
showing favourable performance. Entrokey-generated keys ex-
hibit uniform distribution across the ECC keyspace. The 6%
difference compared to Standard PRNG in LSB bias resistance
may have cryptographic implications. These results indicate
that Entrokey’s Al-driven approach performs comparably to
or better than traditional entropy generation methods.

D. Compression Resistance: Information-Theoretic Validation

Our compression resistance  experiment provides
information-theoretic validation of entropy quality. As
shown in Fig. 12, the results show a bimodal distribution
between cryptographically secure sources and predictable
patterns. Testing 10KB samples from each source, Entrokey
achieved an average compression ratio of 1.118 across all
four algorithms, expanding by 11.8% due to compression
metadata overhead, which is consistent with true randomness.
OS Random (1.014) and Mersenne Twister (1.014) also
exceeded 1.0, confirming their incompressibility. Any ratio >
1.0 indicates incompressible randomness; the specific value
above 1.0 reflects compression algorithm overheads plus the
fact that incompressible data cannot offset fixed headers. All
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Fig. 5. NIST SP 800-22 test suite pass rate distributions across 100 iterations. Overlapping distributions (80-93% range) demonstrate the test’s systematic
inability to distinguish between high-quality sources and the patterned Lagged Fibonacci sequence.
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Fig. 6. Predictive Indexing score distributions across 100 iterations. Clear bimodal separation with no overlap: high-quality sources cluster around 0.65 while
the Lagged Fibonacci pattern consistently scores 0.55, demonstrating reliable pattern detection.

three sources (Entrokey, OS Random, Mersenne Twister)
show comparable incompressibility by this metric.

In contrast, weak sources exhibited high compressibility:
LCG achieved 0.049 (95% reduction), Lagged Fibonacci taps
0.063 (94% reduction), and the alternating pattern 0.006
(99.4% reduction). These results provide complementary val-
idation to Entrokey’s Predictive Indexing: while the CNN-
based approach detects visual patterns in bit matrices, com-

pression testing measures information density directly. The
compression resistance of Entrokey-generated entropy is con-
sistent with its cryptographic quality as measured through
information-theoretic principles.

VI. DISCUSSION AND CONCLUSION

The empirical results presented in this paper suggest po-
tential improvements to cryptographic validation standards.
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Fig. 8. Distribution of Predictive Index scores for 1,000 candidates from Entrokey and a Standard PRNG, showing similar high-quality raw output.

Advances in Al and quantum computing present challenges
that traditional statistical measures may not fully address. This
work explores machine learning approaches as a complemen-
tary validation method.

A. Predictive Indexing as an Alternative Validation Method

The results from our independent experiments (see Fig. 7)
indicate that Entrokey’s Predictive Indexing offers an alterna-
tive approach to entropy assessment. Experiment 1 showed that
the NIST SP 800-22 suite passed deterministic sequences with
predictable patterns. Entrokey’s Predictive Indexing identified
these patterns, demonstrating different detection capabilities.
This empirical validation is consistent with our mathematical

analysis in Section 2.2, where we showed that Shannon
entropy H(X) provides no bound on adversarial advantage.
The Predictive Indexing framework attempts to operationalise
the theoretical requirement for conditional min-entropy assess-
ment (Equation 10) through deep learning. This represents
a methodological difference: from statistical validation to
pattern-based assessment.

Our subsequent experiments show that Entrokey’s Predic-
tive Indexing can be used beyond diagnostic purposes. As
demonstrated in Experiment 2, it can enable the selection of
high-quality entropy candidates. Experiment 3 examined the
relationship between high-quality sources and cryptographic
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LSB Bias Distributions Across 100 Iterations
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Fig. 10. LSB bias distributions across 100 independent iterations for seven entropy sources. High-quality sources (Entrokey, Standard PRNG, Mersenne
Twister, Xorshift) show normal distributions with mean bias 3.6-4.2% and natural variation. Weak sources (LCG, Alternating, Sequential) exhibit deterministic
failure with exactly 50% bias (maximum possible) in all 100 iterations, appearing as single bars due to zero variance, demonstrating systematic cryptographic
vulnerability.

properties, showing that keys generated from sources with high  that Entrokey-generated entropy is incompressible, which is
Predictive Index scores exhibit low bias and uniform key-space consistent with properties of true randomness according to
distribution. Finally, Experiment 4 provided complementary Kolmogorov complexity theory. Taken together, these findings
validation through compression resistance testing, showing suggest that Predictive Indexing may be useful for generating,
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highly significant differences (F = 27,109, p < 0.001). Entrokey demonstrates the lowest mean bias among the tested generators.

selecting, and validating cryptographically secure entropy.

B. Implementation Considerations

Organizations considering entropy validation improvements
have multiple implementation options, including hardware and
software-based approaches. Hardware solutions such as Quan-
tum Key Distribution (QKD) require significant infrastructure
investment and have operational constraints. Software-based
validation methods like Predictive Indexing offer an alternative
approach.

Improving entropy source validation represents one ap-
proach to enhancing cryptographic security in response to
emerging computational capabilities. As a software-based so-
lution, Predictive Indexing can be deployed across existing
infrastructure without requiring hardware modifications.

C. Applications and Future Work

The implications of this research extend beyond the gen-
eration of primary cryptographic keys. The principles of
Predictive Indexing could be applied to cryptographic contexts
requiring high-quality randomness, including the generation
of protocol nonces, initialisation vectors (IVs), and padding
schemes, where subtle biases can lead to vulnerabilities.

Future research could proceed along several avenues. First,
the development of more advanced deep learning architectures,
such as Transformer-based models, may enable the detection
of longer-range and more abstract correlations within data
streams. Second, the creation of a standardised, large-scale
public benchmark dataset of patterned and random sequences
would facilitate research and allow for the comparison of
different validation models. Finally, the integration of real-time
Predictive Indexing modules into hardware security modules

(HSMs) and system-on-a-chip (SoC) designs could provide
continuous validation of entropy sources at the hardware level.

D. Conclusion

The threats of Al-driven cryptanalysis and fault-tolerant
quantum computing present challenges to traditional cryp-
tographic validation methods. This paper has introduced
and empirically evaluated Predictive Indexing, a CNN-based
framework that emulates an intelligent adversary to assess
entropy quality. Our results suggest advantages over traditional
statistical tests, including the ability to differentiate entropy
quality and the relationship with cryptographic properties such
as ECC key generation. The adoption of Al-driven validation
represents a potential evolution in cryptographic entropy as-
sessment.



Compression Ratio
(Higher = Better Randomness)

Compression Ratio
(Higher = Better Randomness)

Compression Resistance Analysis - Real Entrokey
Values above 1.0 indicate incompressible true randomness

GZIP Compression

1317
BZIP2 Compression

1.2 4 1.2 4
1.048
1.002
1.0 1~ — - ey —————T — 7 1.0 T — - A, —[— = = = =~ =
"
L}
f=
o E
0.8 =8 08
< c
©
] P S
= = Theoretical Incompressible Limit (1.0) % -
0.6 50% Compression @ g 0.6 §
é%
51
0.4 O 5 0.4
<
2
z
0.2 0.2 1
0.101
0.038 0.051 0.081 I_l
00 — = =, 00 S O oo
Entrokey os Mersenne LCG Fibonacci  Alternating Entrokey 0os Mersenne LCG Fibonacci  Alternating
Random Twister Random Twister
LZMA Compression ZLIB Compression
1.2 1.2
1.101
1.006 1.018 1.001 1.001
1.0 1~ — - -y — e = e R e it
"
L4}
c
oE
0.8 8 0.8
£5
8=
0.6 28 0.6
2%
om
E
0.4 O 0.4
<
2
<
0.2 0.2 A
0.051 0.050
0.038 0.011 9937 ———  o0.003
0.0 - T I T 1| T 1 T 0.0 - T T T T
Entrokey oS Mersenne LCG Fibonacci Alternating Entrokey oS Mersenne LCG Fibonacci  Alternating
Random Twister Random Twister
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